Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow 2. 3-е издание - Себастьян Рашка (9785907203570)

артикул: 281464878
СОГЛАСНО НАШИМ ДАННЫМ, ЭТОТ ПРОДУКТ СЕЙЧАС НЕ ДОСТУПЕН
1,500.00 грн.
Доставка из: Украина
Описание
[html]Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения.Книга наполнена четкими пояснениями, визуальными представлениями, работающими примерами и детально раскрывает все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения.Третье издание книги обновлено с целью учета версии библиотеки TensorFlow 2 и последних добавлений в scikit-learn. Оно расширено для охвата двух самых современных методик машинного обучения: обучения с подкреплением и порождающих состязательных сетей.Эта книга — ваш попутчик в машинном обучении с применением Python, будь вы разработчиком приложений на языке Python, не знакомым с машинным обучением, или разработчиком, желающим углубить свои знания в современных областях.Основные темы книги:Фреймворки, модели и методики, которые позволяют машинам "учиться" на основе данныхИспользование scikit-learn для машинного обучения и TensorFlow для глубокого обученияПрименение машинного обучения для классификации изображений, смыслового анализа, создания интеллектуальных веб-приложений и многого другогоПостроение и обучение нейронных сетей, порождающих состязательных сетей и других моделейРеализация веб-приложений с искусственным интеллектомВыполнение очистки и подготовки данных для машинного обученияКлассификация изображений с использованием глубоких сверточных нейронных сетейРекомендуемые приемы для оценки и настройки моделейПрогнозирование непрерывных целевых результатов с использованием регрессионного анализаОбнаружение скрытых шаблонов и структуры в данных с помощью кластеризацииУглубление в текстовые данные и данные социальных сетей с применением смыслового анализаПрикладное машинное обучение с прочным теоретическим фундаментом.Новое издание пересмотрено и расширено с целью охвата TensorFlow 2, порождающих состязательных сетей (GAN) и обучения с подкреплением. Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения.Книга наполнена четкими пояснениями, визуальными представлениями и работающими примерами, детально раскрывая все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения.Обновленное с учетом библиотеки TensorFlow 2.0 третье издание предлагает читателям ознакомиться с ее новыми средствами API-интерфейса Keras, а также с последними добавлениями в scikit-learn. Оно расширено для охвата самых современных методик обучения с подкреплением, основанных на глубоком обучении, и введения в порождающие состязательные сети. Наконец, в книге также проводится исследование подобласти обработки естественного языка (NLP), называемой смысловым анализом, что поможет вам использовать алгоритмы машинного обучения для классификации документов.Об авторахСебастьян Рашка, автор ставшего бестселлером 2-го издания этой книги, обладает многолетним опытом написания кода на языке Python. Он проводил многочисленные семинары по практическому применению науки о данных, машинному обучению и глубокому обучению, включая руководство по машинному обучению на SciPy — ведущей конференции, посвященной научным расчетам с помощью Python.Несмотря на то что исследовательские проекты Себастьяна сосредоточены главным образом на решении задач в области вычислительной биологии, ему нравится писать и говорить на темы науки о данных, машинного обучения и языка Python в общем, и он стремится помочь людям разрабатывать решения, управляемые данными, без обязательного знания подоплеки машинного обучения.Недавно его работа и вклад были отмечены званием выдающегося аспиранта 2016–2017, а также наградой ACM Computing Reviews’ Best of 2016.В свободное время Себастьян любит участвовать в проектах с открытым кодом, а методы, которые он реализовал, теперь успешно используются в состязаниях по машинному обучению, таких как Kaggle.Вахид Мирджалили получил звание PhD в машиностроении, работая над новаторскими методами для крупномасштабных вычислительных эмуляций молекулярных структур. В настоящее время он сосредоточил свою научно-исследовательскую работу на приложениях машинного обучения в разнообразных проектах компьютерного зрения в отделении компьютерных наук и инженерии Университета штата Мичиган.Вахид избрал Python в качестве главного языка программирования, и на протяжении своей научно-исследовательской карьеры накопил громадный опыт в написании кода Python. Он преподавал программирование на Python инженерной группе в Университете штата Мичиган, что дало ему возможность помочь студентам понять разные структуры данных и разрабатывать эффективный код на Python.Наряду с тем, что обширные исследовательские интересы Вахида сконцентрированы на приложениях глубокого обучения и компьютерного зрения, он особенно интересуется использованием приемов глубокого обучения для усиления приватности в биометрических данных, таких как изображения лиц, чтобы не раскрывалась информация сверх той, что пользователи намеревались показывать. Кроме того, он также сотрудничает с командой инженеров, работающих над беспилотными автомобилями, где проектирует модели на основе нейронных сетей для слияния многоспектральных изображений с целью обнаружения пешеходов.[/html]
Характеристики
| categoryTitle: | Научная и техническая литература |
График изменения цены & курс обмена валют
Пользователи также просматривали

258.33 грн.
Мягкий чехол JT47 Кот Том и Мышонок Джерри для Samsung Note 20 Lite S24 Ultra S23 A03 A05 A06 A11 A71 A15 A16 A13 A24 A25 A33 A52 A53 A50 M55 M35 Plus Samsung A22 5G гагат
joom.com
198.75 грн.
Forever & Always Wedding Cake Topper With Heart,for Rustic Wedding Party Decor Supplies Cake Accessory,Unique Anniversary Decor
aliexpress.com
1,085.57 грн.
slippers 2021 women summer one-word sandals leather flat-bottomed beach travel shoes large size fashion hhhh, Black
dhgate.com
336.70 грн.
Y51D Hanging Table Pouch Camping Equipment Organizer Folding Table Storage Pouch Bag
aliexpress.com
1,249.51 грн.
women's jeans big plus size fashion 5xl woman's female loose patchwork denim pants trousers clothing clothes 2021, Blue
dhgate.com
1,881.40 грн.
women's t-shirt summer korean style cotton chic v-neck button off shoulder diamonds women short sleeve casual tees t1552, White
dhgate.com
1,713.02 грн.
stylish women dresses hooded hoodies dress autumn sweatshirts casual long sleeve maxi vestidos female solid robe oversized, Black;gray
dhgate.com
5,433.99 грн.
boots winter women's increased thick-soled big round head cross strap black and white fashion
dhgate.com





